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a b s t r a c t

While many studies have described linkages between large-scale climate phenomena and precipitation
and streamflow, fewer studies explicitly address the climatic modulations at sub-regional scales. This
study quantifies statistically the temporal variability in precipitation and streamflow at a regional scale
in the semi-arid area of South Texas associated with three climate indices: El Niño-Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Results show that
ENSO and PDO strongly modulate rainfall during the cold season and, to various extents, streamflow
during the cold and warm seasons. In addition, this study shows that in South Texas streamflow is
consistently below normal (i.e. means) while precipitation slightly increases during AMO-warm. To dif-
ferent extents, the Pacific and Atlantic sea surface temperature (SST) anomalies show stronger influences
on the climate of South Texas when coupled. Droughts are more correlated with La Niña events but these
events play a secondary role during PDO-cold. Although the PDO-cold phase is the dominant driver of
droughts in this area, our analyses also show that the coupled effect of the PDO-cold/AMO-warm phases
significantly increases the intensity of drought conditions to a degree similar to the PDO-cold/La Niña
coupled effect. Given its stronger response to climate anomalies, streamflow offers a more effective tool
for predicting climate variability impacts on South Texas water resources when compared to
precipitation.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

While the societal impacts of water resource depletion are well
documented (Backlund et al., 2008; Karl, 2009; Pachauri et al.,
2014; Taylor et al., 2013), it is not yet clear how the effects of cli-
mate change will combine with non-climatic factors such as
increased water use, land use/land cover changes, and manage-
ment practices to impact available freshwater resources. Ecological
effects along our ocean coastlines as related to changes in riverine
inflows are expected to vary (Dai and Trenberth, 2003). While an
increase in discharge from the Mississippi River will intensify the
frequency of hypoxia in the Gulf of Mexico, the opposite would
happen due to higher discharges in Hudson Bay (Parry, 2007).
An emerging body of research shows that precipitation patterns
and streamflow across much of the United States are associated
with interannual to multidecadal periods of warming and cooling
of the surrounding Pacific and Atlantic surface waters. Clark et al.
(2014) and Fu et al. (2010) studied the El Niño Southern Oscillation
(ENSO) linkages on precipitation and streamflow in the southeast-
ern U.S. region. Hidalgo and Dracup (2001, 2003) acknowledged a
possible ENSO – Pacific Decadal Oscillation (PDO) modulation of
spring-summer streamflow and rainfall in the upper Colorado
River basin and a strong influence of the Atlantic Multidecadal
Oscillation (AMO) on cold season precipitation in the northern
Rocky Mountains and the upper Colorado River. Enfield et al.
(2001) determined that during the AMOwarm phase less than nor-
mal rainfall occurs in most of the U.S. territory. Additionally, the
streamflow response to the AMO’s shift in phase was shown to
be significant in the upper Mississippi River basin, the northern
Rocky Mountain region, and upper Colorado River basin (Rogers
and Coleman, 2003). McCabe et al. (2004) estimated that more
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than 50% of the spatial and temporal variance in multidecadal
drought frequency in the U.S. could be attributed to PDO and
AMO effects. Research in the Yellowstone basin based on tree ring
reconstructions shows that the major drought in the past 250 years
in this basin occurred during a warm AMO-PDO cycle (Hidalgo,
2004). In contrast with streamflow studies based on climate
indices, a study conducted by McCabe and Wolock (2014) found
that the temporal variability of streamflow in several U.S. regions
of coherent spatial variability were only weakly associated with
climate indices.

Assessment of water resources at the large-regional scale with
applications to small-regional scales can be problematic mainly
because water uses and climate gradients can be significant at
the sub-regional or local scale and are typically not accurately rep-
resented (Faurès, 1997). Predictions derived from general circula-
tion models (GCMs) related to the effects of climate change on
two of the most important drivers of freshwater inflow to estuar-
ies, precipitation and temperature, are not consistent. The Cana-
dian CGCM1 and the Hadley HADCM2 models for instance,
predict future extreme rainfall and runoff events for the Missis-
sippi River but they disagree on both the magnitude and direction
of the change (Day et al., 2005; Wolock and McCabe, 1999). Inaccu-
racies in these predictions for such large-scale river basins are
expected to amplify for sub-regional and small-scale areas.

While these types of analyses provide valuable insight, signifi-
cant gaps still remain (Kuss and Gurdak, 2014; Meixner et al.,
2016). Results derived from regional-scale studies lack the level
of detail necessary for informed decision-making (Döll and
Fiedler, 2007; Taylor et al., 2013), while those from local scales
are almost non-existent. We hypothesize that the comprehensive
investigation of sub- or small-scale regions is important and that
the large-scale ocean atmosphere phenomena (i.e. ENSO, PDO,
and AMO) may be significantly modulated by local forcing, such
as topography, surface heterogeneity, and coastal and regional
water bodies. Therefore, in order to provide the best tools to assess
current water resources and proactively mitigate future supply
issues, it is important to quantify the potential relationships
between large-scale climate indices and river basins at the sub-
regional and/or local scale. These objectives have typically not
been addressed in previous studies especially using a long histori-
cal record (almost a century) of streamflow or precipitation.

This study investigates the intricate problem of linking the
response of rainfall and runoff over semiarid catchments in the
South Texas region due to large-scale Atlantic and Pacific ocean-
atmosphere phenomena from interannual to multidecadal time
scales. The specific objectives are to analyze the statistical relation-
ship of ENSO, PDO, and AMO indices (independently and coupled)
with precipitation and streamflow. The derived relations are used
to ascertain those climate indicators having the most impact on
the water resources to improve predictions as part of an integrated
water resources management.

Time-series of climate indices based on monthly sea surface
temperature (SST), streamflow (raw monthly mean data for 16 sta-
tions from 1922 to 2012), and precipitation (raw daily rainfall
amount values for 200 stations over a 110-year period) for
extended periods were used to investigate interannual, inter-
decadal and multidecadal oscillations and the subsequent effects
on the hydrology of South Texas. Precipitation and streamflow
responses to the individual ENSO, PDO, and AMO and combined
PDO-AMO and PDO-ENSO influences were analyzed using non-
parametric testing. The correlations are quantified for both (cold
and warm) seasons and similar temporal phases of the climate
indices in this regional watershed. Through these investigations,
the individual and coupled effect of climate phenomena on stream-
flow and precipitation variability, for almost a century, are identi-
fied and analyzed from a water resource perspective.
2. Data and methods

2.1. Study area

The area was selected for its geographic location within North
America (i.e. on the semi-arid Gulf Coast) and the interaction with
seasonal air masses, which affect its unique climate variability
(TWDB, 2012). The study area encompasses approximately
23,500 km2 in South Texas and is delineated by the Nueces and
Guadalupe river sub-basins to the North and South, respectively
(Fig. 1).

With a large zonal precipitation gradient (<500 mm to the west
to >1000 mm to the east, see Fig. 1), the climate is predominantly
subtropical (Kim et al., 2013) humid with a regional climate dom-
inated by hot summers and mild winters with occasional severe
freezes (mean annual temperatures 23.5 �C). The prevailing south-
easterly trade winds bring large quantities of moisture from the
Gulf of Mexico, causing South Texas to experience some of the
highest atmospheric moisture contents in the U.S. (Norwine
et al., 1995).

Commonly, rainfall and evaporation are the main drivers of the
flow of rivers and streams in South Texas. There is very information
regarding the groundwater discharge to rivers in this area. For the
Gulf Coast aquifer outcrop (which includes the study area), there is
a general trend of decreasing baseflow from northeast to south-
west. The overall lowest baseflow in the state of Texas are esti-
mated for the study area, except for the upper reaches where
some of the largest increasing rends are calculated (BEG, 2005).
Compared to eastern Texas where mean annual rainfall is nearly
1500 mm and annual evaporation is less than about 1780 mm,
western Texas annual evaporation rates can be as high as
2670 mm; whereas, mean annual rainfall is significantly lower,
ranging from 200 to 500 mm. Consequently, streams in eastern
Texas flow year round while most western Texas streams flow
intermittently (TWDB, 1996). For instance, the springs that feed
the Comal and San Marcos Rivers, in the north side of the San Anto-
nio river basin, have an average monthly discharge of 8.7 and 4.6
cubic meter per second (m3 � s�1), respectively. During the severe
drought of the 1950s the Comal Springs, which are more prone
to drought conditions, ceased to flow, while San Marcos River con-
tinued to flow, but dropped to 1.3 m3 � s�1 (SAR BBEST et al., 2011).
While mostly driven by precipitation patterns that influence the
spring flow supporting the river, stream flow can be amplified by
treated municipal effluent that originates primarily as groundwa-
ter from the Edwards Aquifer (SAR BBEST et al., 2011). Further-
more, the hydrology in the lower part of San Antonio River varies
seasonally. In the investigated area, the rainy season is often
defined as the months of April-June and September-October with
summer/warm (April to September) and winter/cold (October to
March) mean monthly rainfall of 72.7 (number of records in
months (n) = 620) and 44.9 mm (n = 492), respectively. The highest
streamflow months typically extend from July through
October. The mean monthly basin-normalized streamflow for the
warm and cold months are 1.13 � 10�3 (n = 444) and 1.12 � 10�3

m3 � s�1 � km�2 (n = 356), respectively.
2.2. Data

The major data sets used to develop the relationships
between South Texas streamflow, precipitation, and SST
variability were surface flow discharge from streams unimpaired
by dams and barriers, daily precipitation data in the study area,
and SST data for the Pacific (ENSO 3.4 and PDO) and Atlantic
Oceans (AMO).



Fig. 1. Change in total annual precipitation rates (in millimeters (mm)) from east to west are derived from the annual average rainfall for the period of record. The location of
the study area is depicted by the highlighted area in the lower-right inset Texas map. The locations of stream and precipitation gauges as well as the stream system analyzed
in this study are also represented.
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2.2.1. Streamflow and precipitation data
Daily streamflow data from 16 unimpaired gage stations were

identified in the Guadalupe, San Antonio and Nueces River basins
utilizing the U.S. Geological Survey (USGS) NWIS web data retrieval
[http://waterdata.usgs.gov/nwis/]. For several streams, stations
upstream from dams and barriers were included while stations
downstream from the impairment were not. While water with-
drawals likely affect all streams they were not considered impair-
ments in this study, their impact is addressed as part of the results
and discussion sections. The period of record for all stations
extended from 1922 to 2012 (90 years). Daily atmospheric precip-
itation data from approximately 200 meteorological stations in the
South Texas area were collected from the National Oceanic and
Atmospheric Administration (NOAA), National Climatic Data Cen-
ter (NCDC) web site: http://www.ncdc.noaa.gov/. The data were
imported to ArcGIS and spatially interpolated (in average 60%)
using the ordinary kriging method on daily data. The same method
was utilized to interpolate the missing data in the precipitation
time-series of each station. Remaining data gaps were filled in
assuming that precipitation rates change linearly in space and
time. However, although the number of active precipitation sta-
tions were less at the beginning of the record when compared to
mid-record, most of the interpolated data is derived from station
discontinuation and replacement with others located within a
few hundred of meters from the original location in order to main-
tain a continuous record.

2.2.2. Pacific and Atlantic sea surface temperature data
2.2.2.1. Pacific Decadal Oscillation. The PDO index is defined as the
leading principal component of monthly SST anomaly variability
in the North Pacific Ocean, poleward of 20�N (Mantua et al.,
1997). Updated, standardized values for the PDO index data were
retrieved from Nate Mantua’s anonymous ftp site [http://re-
search.jisao.washington.edu/pdo/PDO.latest]. This index is derived
from two data sources: UKMO Historical SST data set for 1900-81
including Reynold’s Optimally Interpolated SST (V1) values for Jan-
uary 1982 – December 2001, and the OI SST Version 2 (V2) begin-
ning January 2002 – present.

2.2.2.2. Atlantic Multidecadal Oscillation. The AMO index, an index
of the North Atlantic SST as defined by Enfield et al. (2001), was
acquired from NOAA’s Earth System Research Laboratory (ESRL)
web page available at http://www.esrl.noaa.gov/psd/data/time-
series/AMO/. The AMO index time-series (both smoothed and
unsmoothed versions) are based on the monthly updated Kaplan
SST dataset (Kaplan et al., 1998; Reynolds and Smith, 1994). Kaplan
SST V2 data comes from the NOAA/OAR/ESRL PSD, Boulder, Color-
ado, USA, from their web site at http://www.esrl.noaa.gov/psd/.

http://waterdata.usgs.gov/nwis/
http://www.ncdc.noaa.gov/
http://research.jisao.washington.edu/pdo/PDO.latest
http://research.jisao.washington.edu/pdo/PDO.latest
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.esrl.noaa.gov/psd/
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The spatial coverage is 5.0-degree latitude by 5.0-degree longitude
(5� � 5�) and the temporal coverage consists of monthly anomalies
relative to the 1951–1980 climatological base period. A complete
description of the originator’s data set is available at http://in-
grid.ldeo.columbia.edu/SOURCES/. KAPLAN/.EXTENDED/.v2/.ssta/.

2.2.2.3. El Niño-Southern Oscillation. The ENSO monthly index used
in this study is based on area-averaged SST anomalies in the Niño
3.4 region (120�W–170�W and 5�S–5�N) of the tropical Pacific
Ocean and was retrieved from the National Center for Atmospheric
Research Climate Analysis as five month running means relative to
a base period climatology from 1950–1979 (Trenberth, 1997).

2.3. Methods

2.3.1. Streamflow and rainfall data preprocessing
The monthly arithmetic mean of the regional precipitation was

used to generate the cold and warm season precipitation indices
(Fig. 2a) which are November to February and May to September,
respectively. The monthly streamflow rates (m3 � s�1) were nor-
malized to the respective basin area and the calculated geometric
mean values (in m3 � s�1 � km�2) were used in the following
analysis.

The monthly flow records were used to generate annual cold
and warm season indices for each stream (Fig. 2b) that correspond
to the streamflow total for each season. Annual data are used to
avoid any interpretative bias due to autocorrelations caused by
seasonal changes. For both precipitation and streamflow, the
months of March, April, and October are considered transitional
months and their records are shown in Fig. 2, but are not included
in the statistical analyses presented here.

2.3.2. SST data preprocessing and phase definition
To define the phases of the SST indices low-pass filtering of the

raw monthly ENSO, PDO and AMO SST indices were performed
Fig. 2. Stacked area chart showing how each category (i.e. cold, warm, and
transition months) contribute to the cumulative total of annual: (a) precipitation
depths and (b) streamflow discharge volumes. The variables are temporally
sectioned in cold (November-February) and warm (May-September) seasons as
well as a transition period (March, April, October) not used in the statistical
analyses.
using 12, 60, and 120 month sliding windows, respectively. These
smoothing operations respectively reduce intraseasonal, interan-
nual, and interdecadal effects (‘‘noise”) in these time series. Over-
all, the SST phases (warm/positive and cold/negative) were
defined according to the sign of these smoothed ENSO, PDO, and
AMO indices, which are shown in Fig. 3.

The positive/negative phases of the ENSO index to respective El
Niño (ENSO warm)/La Niña (ENSO cold) events is simple but does
not separate the intermediate (ENSO neutral) transition stages.
Thus, a more restrictive definition of El Niño/La Niña that takes into
account persistence was also used following the recommendation
of Trenberth (1997). Briefly, ENSO index was smoothed using a
5-month running mean (from the original source) and a 6-month
persistence warm/cold phase was required (i.e. to be above/below
+/- 0.4 �C for 6 months or more) to qualify as an El Niño/La Niña
event. With this definition, El Niño/La Niña events occur roughly
about 50% of the time (Trenberth, 1997).

The PDO and AMO periods between 1926 and 1994 are adopted
from McCabe et al. (2004) which evaluated coupled effects of PDO
and AMO for four periods: 1- PDO warm/AMO warm (1926–1943);
2 - PDO cold and AMO warm (1944–1963); 3 - PDO cold and AMO
cold (1964–1976), and 4 - PDO warm and AMO cold (1977–1994).
Our evaluation of records and recent studies (Gray et al., 2004;
Maurer et al., 2004; McCabe et al., 2004) indicate that PDO
returned to a warm phase in 1995 before shifting back from the
warm phase to the cold phase around 2000. After 2000 PDO shifted
quickly back to a warm phase for a few years, and, starting with
2005, then returned to a cold phase that is apparent at least until
2012. AMO shifted to the warm phase in the mid-nineties and
stayed in that phase for the rest of the study period. Therefore,
we categorize PDO/AMO warm and cold years, for the remaining
record (1996–2012) of oceanic SSTs as: 1 – PDO warm/AMO warm
(1996–1998 and 2002–2005); and 2 – PDO cold and AMO warm
(1998–2002 and 2006–2012).

2.3.3. Statistical analysis
To investigate statistical relations a cross-correlation function

(ccf) analysis was performed. Cross (lagged) correlation provides
an effective measure to establish the similarity of two variables
as a function of the time-lag of one relative to the other. We only
discuss correlation coefficients (‘‘r” not ‘‘R2”) that are significant
at the 95% confidence level. The ccf were constructed using the cli-
mate indicator as the preceding/input ‘‘x” time-series and precipi-
tation (or streamflow) as the trailing/response ‘‘y” time-series. For
the precipitation and streamflow cross-correlation, precipitation
was used as the preceding time-series. The purpose of doing lagged
correlations between rainfall and streamflow is to investigate the
response time of river runoff to precipitation events. Since we
are working with monthly data and surface runoff generally
responds to rainfall rapidly (hours to days) a maximum of the
lagged correlation function is expected at zero lag. Slower response
times of streamflow to rainfall are expected under dry soil condi-
tions (days to months) when rainfall leads streamflow. In this
study, lagged correlations between rainfall/streamflow and the cli-
matic indices are explored only for small lags (�months for ENSO
and �years for decadal and multidecadal). Because the climatic
indices used are low-passed (smoothed) in time to remove vari-
abilities at intraseasonal (12 month filter), internanual (60 month
filter), and interdecadal (120 month filter) time scales for ENSO,
PDO, and AMO, respectively, we are cautious to interpret these
lagged correlations as more than a rapid response.

To minimize the effect of autocorrelation in the ‘‘x” time-series,
the well-established prewhitening method was applied to both
time-series (Chatfield, 2016; Jensen, 1996). Prewhitening was
achieved by finding an autoregressive integrated moving average
(ARIMA) model that best fit the ‘‘x” time-series and replacing the

http://ingrid.ldeo.columbia.edu/SOURCES/.%20KAPLAN/.EXTENDED/.v2/.ssta/
http://ingrid.ldeo.columbia.edu/SOURCES/.%20KAPLAN/.EXTENDED/.v2/.ssta/


Fig. 3. Graph showing the: (A) precipitation (12 month filter), (B) streamflow (12 month filter), (C) ENSO 3.4 (12 month filter), (D) PDO (60 month filter), and (E) AMO
(120 month filter) over the entire period of study. PDO and AMO coupled cycles of the warm and cold phases are depicted by different shaded zones. Recorded Texas droughts
(TWRI, 2011) are represented by vertical transparent boxes.
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‘‘x” time-series with the residuals from the ARIMAmodel. To deter-
mine which ARIMA model was the best fit, all combinations (from
zero to four) of the three order components (autoregressive order,
degree of differencing, and moving average order) were tested. The
model with the lowest Akaiki information criteria (AIC) value was
selected as the best fit. The ‘‘y” time-series was then replaced with
the residuals produced by applying the best fit ‘‘x” time-series
ARIMA model to the ‘‘y” time-series. ARIMA modeling was per-
formed with the R Project for Statistical Computing software using
the Hyndman ‘‘forecast” library (Hyndman, 2008). Further discus-
sion of ARIMA modeling can be found elsewhere (Anderson,
1977; Box et al., 2015; Salas et al., 1980).

An independent evaluation of the Pacific (Atlantic) Ocean SSTs
impacts on South Texas precipitation and streamflow variability
was performed using the cold or warm phases of the ENSO (i.e.
ENSO cold and warm years as well as the more restrictive El
Niño and La Niña years), PDO cold years (AMO cold years), and
the PDO warm years (AMO warm years). The respective cross-
correlations between two series (i.e. annual means) were
examined in order to identify the statistical significance
(Mann-Whitney-Wilcoxon test) of the relationships between pre-
cipitation and streamflow and the climate variability indexes.

The Mann-Whitney-Wilcoxon test (Fisher, 1958, 1973), a rank--
sum test rather than a test of the mean applied to check for iden-
tical populations (does not require normal distribution), was
utilized to evaluate and quantify the impacts of SSTs on streamflow
and precipitation variability during cold and warm season. The use
of this test was necessary as a Shapiro-Wilk test for normality (null
hypothesis is normal distribution) showed that data are not nor-
mally distributed. The Mann-Whitney-Wilcoxon test was applied
to cold and warm phases of each of the interdecadal (AMO and
PDO cold and warm) and interannual (ENSO cold and warm
phases) STTs in relation to the precipitation and streamflow cold
and warm water years. The ENSO variability was also analyzed
using the more restrictive El Niño and La Niña phases, which span
over shorter periods compared to the cold and warm ENSO phases.

Using this method, we tested different hypothesis with the sig-
nificance of the results quantified using the p-value. Following the
common convention, if the p-value is less than (or equal to) a, then
the null hypothesis is rejected in favor of the alternative hypothe-
sis. If the p-value is greater than a, which at 95% is commonly 0.05,
then the null hypothesis is not rejected. Although we use a 95% sig-
nificance level, most p-values used in selecting different popula-
tions to quantify climate variability are well below 0.05, thus
ensuring a much greater level of statistical significance.

The coupled effects of PDO and AMO and PDO and ENSO on pre-
cipitation and streamflow have been analyzed using the same
above-mentioned techniques. To measure the variability of precip-
itation and streamflow in response to individual and coupled SSTs
anomalies, we have computed the percent (%) yearly and seasonal
(i.e. cold and warm water years) difference in precipitation depths
and streamflow discharge volumes with respect to all temporal
interdecadal and interannual phases. For these calculations, we
used mean values (Giorgi et al., 2001) which does not exclude
the influence of extreme events such as drought or wet periods,
and calculated percent decrease or increase in precipitation and
streamflow for the respective coupled phases of the climate indica-
tors. .

The relationship between the SST anomalies and drought occur-
rence also was analyzed using non-parametric testing such as the
chi-squared (Cohen, 1988; Cramér, 1946; Nist/Sematech, 2012;
Snedecor and Cochran, 1989) and Cramer’s ‘‘V” methods (Cramér,
1946). These techniques are a measure of both the statistical signif-
icance and strength of association between variables. The signifi-
cance of correlation is based on p-values as mentioned above
while the strength of correlation is measured using ‘‘V” values or
levels of association. For instance, ‘‘V” values between 0.15 and
0.20 indicate that variables are only weakly correlated and mini-
mally acceptable, while values between 0.35 to 0.40 show very
strongly/desirable correlated variables (Cohen, 1988). We have cal-
culated drought scores (DS) using the ratio of reported non-
droughts to droughts months (TWRI, 2011) that were statistically
associated with each temporal phase of the climate indicators.
We consider that any score value lower than one is associated with
a potential occurrence of drought and the probability becomes
stronger as the score approaches 0.1. This is based on the assump-
tion that, in any given year or SST phase, drought occurrence is
likely when the number of dry months exceeds that of wet months.
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3. Results

3.1. South Texas precipitation and streamflow variability

A cross-correlation comparison between the monthly
time-series of precipitation and stream flow is presented in Fig. 4
(precipitation leads for negative lags). The horizontal dashed lines
show the critical correlation value (0.06) at the 95% significance
level. A significant maximum positive correlation (0.41) exists at
zero lag, which is consistent with a transfer of rainfall and surface
runoff to the rivers following significant precipitation events. Other
smaller but significant positive correlations occur for lags between
�1 and �8 months, likely the delayed response of streamflow to
that portion of precipitation that becomes part of aquifer storage
and discharges as baseflow (subsurface) to rivers and streams. In
addition to the processes introduced here to describe the relation
between precipitation and streamflow discharge, there are likely
other factors within a basin that can influence this relationship
(Prathumratana et al., 2008), and those will be addressed in the
discussion section.

The rank- sum test shows that precipitation during the warm-
water years is almost twofold higher when compared to the cold
years, while streamflow discharge is only slightly higher during
the cold years (Fig. 5; Tables 1, 2). This could be explained by losses
to evaporation which in semi-arid and arid regions could exceed
precipitation rates during the warm months (IPCC, 2007). In addi-
tion, increased water uses, from both riverine and groundwater
sources, during the warm months may significantly decrease dis-
charge to streams/rivers. Differences in medians reveal statistically
significant variabilities in precipitation between the cold and warm
season precipitation (p-value 1.4 � 10�21). On the other hand,
seasonal streamflow variability is only marginally significant
(p-value 9.0 � 10�3) (Table 1).

3.2. ENSO and South Texas precipitation and streamflow

Cross-correlation analysis indicates significant positive correla-
tions between ENSO and precipitation at lag zero months (r = 0.4;
Fig. 4. Cross correlation function between precipitation and streamflow (precipitation
response of streamflow to precipitation events. Critical correlation values (c.i.) are repre
points. As the lag is increased to compute lagged correlations, the number of data points
correlations at larger lags are not considered in this paper.
c.i. of 0.19), likely due to a strong positive correlation that occurs
during the cold season (r = 0.35). Rank-sum test analyses of the
El Niño and La Niña phases of ENSO indicate a slightly higher
influence on the annual precipitation (p-value: 7.9 � 10�10; vari-
ability: 29.0%) when compared to the cold and warm ENSO phases
(p-value: 2.05 � 10�8; variability: 18.8%). This may be explained by
the neutral interval of ENSO included in the ENSO cold and warm
analyses. El Niño causes an increase above the overall/seasonal
mean and La Niña a decrease. Both ENSO cold and warm and El
Niño and La Niña phases have a significant influence on the cold
season precipitation (p-values: 1.6 � 10�8 and 7.1 � 10�11, variabil-
ity: 53.7% and 34.4%, respectively), while no effects on the warm
season precipitation (p-value: 0.94 and 0.7 respectively)
(Fig. 6a, b; Table 1). This is also confirmed by the insignificant
cross-correlations.

The rank-sum test results also show that ENSO cold/warm and
El Niño/La Niña phases significantly modulate yearly streamflow
discharge (p-value: 1.7 � 10�8 and 6.7 � 10�6, variability: 34.7%
and 49.9%, respectively) (Fig. 6a, b). Furthermore, El Niño and La
Niña cause 57.2% of seasonal discharge variability during the cold
season and 48.1% during the warm season. A high impact is also
computed for the cold season streamflow (47.7%) during the ENSO
cold/warm phases, although there are no significant correlations. A
much lower variability (20.5%) was estimated during the warm
season when compared to the El Niño/La Niña (Table 1; Fig. 6a, b).
3.3. PDO and South Texas precipitation and streamflow

PDO positively correlates with yearly precipitation at zero lag
years (r = 0.34; c.i. = 0.19). A relatively weak negative lag correla-
tion at �3 years (r = �0.21) that can be associated with PDO cold
when less precipitation is expected to occur. These lagged effects
are evident during the warm season as indicated by the strong neg-
ative correlation (r) of �0.25 at lag �3 years. Statistical evaluation
of precipitation variability shows that the cold and warm phases of
PDO have no significant impact on the yearly precipitation depths
(p-value = 0.14; medians: 49.4 and 53.0 mm, respectively). On the
other hand, the cold season precipitation is slightly higher during
leads for negative lags). A strong autocorrelation is noted showing the positive
sented by horizontal dashed lines and are a function of the number of records/data
is reduced, thus the uncertainty in the sample autocorrelation increases. As a result,



Fig. 5. Boxplot analyses of monthly (a) precipitation and (b) streamflow showing the statistically significant differences between precipitation and streamflow discharge
during the cold (C) and warm (W) seasons (p-value from Mann-Whitney-Wilcoxon test).

Table 1
Summary of precipitation and streamflow changes. Values are reported as% above (+) or below (�): the overall mean for annual data, the cold season mean, and warm season
mean for different periods composited according to the phases of the climatic indices. The number of records/months (months) included in the variability estimates for each
climate anomaly and precipitation and streamflow are included in parenthesis next to the percent value.

Climate indices Precipitation (%); number of data points ‘‘n” (months) Streamflow (%); number of data points ‘‘n” (months)

Annual Cold season Warm season Annual Cold season Warm season

ENSO
Cold �9.2 (758) �15.6 (240) �0.5 (250) �16.9 (551) �20.9 (200) �10.9 (209)
Warm +9.6 (725) +18.8 (202) +0.5 (305) +17.8 (514) +26.8 (156) +9.6 (235)
ENSO
La Niña �13.6 (359) �22.9 (113) �3.2 (105) �15.4 (250) �14.5 (97) �21.0 (90)
El Niño +15.4 (453) +30.8 (147) +3.0 (172) +34.5 (308) +42.7 (110) +27.1 (128)
PDO
Cold +1.5 (613) �8.7 (201) +5.6 (258) �19.5 (509) �16.9 (168) �21.4 (213)
Warm +5.4 (688) +9.7 (231) +2.9 (286) +17.6 (556) +15.1 (188) +19.7 (231)
AMO
Cold �2.2 (772) �4.7 (246) �2.0 (305) +13.3 (466) +13.4 (156) +12.3 (194)
Warm +2.4 (711) +5.2 (196) +2.1 (205) �10.1 (599) �9.9 (200) �9.4 (250)
PDO/ENSO
Cold/Cold �5.5 (374) �21.0 (140) +8.6 (135) �17.2 (314) �19.4 (117) �14.2 (115)
Warm/Cold �3.6 (281) �4.4 (97) +3.2 (110) �16.4 (237) �23.1 (83) �6.9 (94)
Cold/Warm +12.2 (239) +19.2 (61) +2.3 (123) �23.1 (195) �11.1 (51) �29.7 (98)
Warm/Warm +11.6 (407) +20.0 (134) +2.7 (176) +42.5 (319) +45.3 (105) +37.7 (137)
PDO/AMO
Cold/Cold +5.8 (286) �9.5 (97) +13.9 (120) +10 (178) +8.6 (60) +7.9 (75)
Warm/Cold +1.2 (420) +7.3 (139) �3.9 (174) +15.4 (288) +16.4 (90) +15.1 (119)
Cold/Warm �2.2 (327) �7.9 (104) �1.4 (138) �35.3 (331) �30.6 (108) �37.0 (138)
Warm/Warm +11.8 (268) +13.3 (92) +13.5 (112) +20 (268) +13.8 (92) +24.6 (112)
Precipitation/Streamflow N/A (1483) �24.9 (492) +21.5 (620) N/A (1065) �0.3 (356) +0.6 (444)
p-value 1.4 � 10�21 9.0 � 10�3
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PDO-warm (median: 49.2 mm versus 41.0 mm) (p-value = 0.005).
An approximately 18.4% change in precipitation between the cold
and warm phases of PDO is likely for South Texas during the
defined cold season years, while no significant influence of PDO
is observed on the warm season precipitation (p-value = 0.67)
(Fig. 6c). This is consistent with the cross-correlation evaluation
which shows no significant teleconnections for the warm season
but a significant positive link for the cold season (lag zero;
r = 0.27).

Significant positive correlations between PDO and annual
streamflow (r = 0.24; c.i. = 0.21) occur at lag zero showing a rapid
streamflow response especially during the warm season
(r = 0.22). Contrary to precipitation, yearly streamflow seems to
vary significantly with the cold and warm phases of PDO
(p-value of 3.4 � 10�14) (Table 1) causing a 37.1% total change.
Furthermore, the cold and warm season streamflow also shows
significant changes between the cold and warm phases of PDO as
indicated by the differences in means and medians (Table 2) and
sufficiently low p-values (i.e. 3.2 � 10�6 for cold season and
6.6 � 10�6 for warm season). For the period of record, PDO caused
a total change of 32.0% in cold season streamflow and 41.2% in
the warm season (Fig. 6c).

3.4. AMO and South Texas precipitation and streamflow

The AMO cold and warm phases do not modulate yearly and
seasonal precipitation (p-value: 0.26). Based on the slight differ-
ences of the means, percentage changes in year-to-year and sea-
sonal precipitation are extremely low (Tables 1, 2; Fig. 6d) and
are not statistically significant. Cross-correlations show that pre-
cipitation leads AMO (i.e. significant positive correlation at lag
�4 years (r = 0.22; c.i. 0.19 and decreasing with time)) for the
warm season in contrast with the North Pacific climate anomalies
influencing South Texas precipitation mainly during the cold sea-
son. However, PDO and ENSO correlations are at the zero lag and
are stronger, showing a significant immediate impact of these



Table 2
Summary table of mean and median values for each temporal phase of individual and coupled climate indicators and defined water years/seasons used in the statistical analyses.
Mean monthly rainfall and normalized streamflow are reported in mm and 10�4 � m3 � s�1 � km�2, respectively.

SST anomaly Monthly
precipitation

Cold season
precipitation

Warm season
precipitation

Monthly
streamflow

Cold season
streamflow

Warm season
streamflow

mean median mean median mean median Mean median mean median mean median

PDO/ENSO
Cold/Cold 56.5 45.1 35.4 30.5 78.9 66.8 9.3 4.3 9.0 4.3 9.7 4.0
Warm/Cold 57.6 46.9 42.9 36.5 75.0 63.8 9.4 6.6 8.6 7.0 11.0 5.8
Cold/Warm 67.1 59.4 53.5 55.5 74.3 65.4 8.7 5.4 10.0 5.9 8.0 4.6
Warm/Warm 66.8 55.5 53.9 47.4 74.6 59.3 16.0 10.0 16.0 10.0 16.0 8.5
PDO/AMO
Cold/Cold 63.3 50.1 40.6 35.4 82.7 69.4 12.0 7.3 12.0 6.8 12.0 7.0
Warm/Cold 60.5 50.9 48.2 41.4 69.8 57.2 13.0 7.1 13.0 8.0 13.0 5.6
Cold/Warm 58.5 48.1 41.3 35.2 71.6 65.0 7.3 3.3 7.8 3.6 7.1 2.9
Warm/Warm 66.9 55.5 50.9 43.7 82.5 71.7 14.0 8.7 13.0 9.2 14.0 7.9
PDO
Cold 60.7 49.4 41.0 35.4 76.7 65.9 9.1 4.8 9.3 4.7 8.9 4.3
Warm 63.0 53.0 49.2 41.6 74.8 61.5 13.0 8.1 13.0 8.4 14.0 6.8
AMO
Cold 58.5 48.2 42.8 36.4 71.2 58.4 13.0 7.2 13.0 7.5 13.0 6.3
Warm 61.2 49.7 47.2 39.2 74.2 64.7 10.0 6.0 10.0 6.7 10.0 5.0
ENSO
Cold 54.3 42.9 37.9 30.7 72.3 61.5 9.4 5.5 8.9 6.3 10.0 4.7
Warm 65.5 55.4 53.3 45.8 73.0 60.8 13.0 8.3 14.0 9.4 12.0 6.6
ENSO
La Niña 51.7 40.6 34.6 27.9 70.4 61.8 9.5 5.2 9.6 5.9 9.0 4.1
El Niño 69.0 59.4 58.7 54.0 74.8 62.5 15.0 8.5 16.0 9.4 14.0 6.3
All years 59.8 48.8 44.9 36.8 72.7 61.2 11.0 6.7 11.0 7.1 11.0 5.7

Fig. 6. Graphs showing the computed% changes in precipitation and streamflow during ENSO warm and cold phases (a), La Niña and El Niño (b), PDO (c), AMO (d), coupled
PDO/AMO (e), and coupled PSO/ENSO (f).
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anomalies that may explain the large observed precipitation vari-
abilities when compared to AMO.

The overall streamflow response to the AMO is significant (p-
value of 8.6 � 10�5) with a total variability of 23.6% between the
two AMO phases (Fig. 6d). Seasonally, streamflow is slightly higher
during the AMO-cold compared to AMO-warm (p-value: 0.02;
Table 1), despite the lack of influence of the climate indices
(AMO -cold and -warm) on precipitation. Cold and warm season
streamflow discharge could vary by about 23.2% and 22.6%, respec-
tively, between the two AMO phases (Fig. 6d). A weak, but statisti-
cally significant positive correlation at lag �4 years (r = 0.22; c.i.
0.21) is also noted for the warm season which likely reflects the
offset effects of AMO on precipitation and, thus, streamflow
response.

3.4.1. PDO-AMO coupled influences
3.4.1.1. Precipitation variability. Coupled PDO cold/AMO cold
(PDO/AMO C/C), PDO warm/AMO cold (PDO/AMO W/C), and PDO
cold/AMO warm (PDO/AMO C/W) phases show little difference in
median values. The overlapping confidence intervals (95%), which
are insensitive to distribution, provide strong evidence that they
are not independent populations. A slight difference is noted for
the PDO warm/AMO warm (PDO/AMO W/W) when compared to
the other conditions, with a lower degree of overlapping of the
95% c.i. (Fig. 7a).

A Mann-Whitney-Wilcoxon test performed between the W/W
and the other phases shows no significant statistical differences
between the W/W and the C/C and W/C cycles (p-value range
between 0.1 and 0.9). On the other hand, slightly significant differ-
ences at the 95% c.i. are found between the W/W and C/W cycles
(p-value: 0.02) indicating that these could be independent popula-
tions when compared to the other two coupled PDO/AMO cycles.
The computed annual precipitation variability (expressed as%
below or above the overall precipitationmean presented in Table 1)
indicate that the combination of same sign PDO and AMO have the
largest effect on South Texas precipitation, with the largest influ-
ence during the PDO/AMO W/W (11.8% above mean), followed
by the PDO/AMO C/C (5.8% above the mean).

Although following the same pattern as the yearly trend,
slightly higher climatic seasonal variability is noted for precipita-
tion among the different PDO/AMO phases (Fig. 7c, Table 2). Signif-
icant differences at the 95% c.i. are observed for the cold season
precipitation during the following coupled phases: C/C and W/W
(p-value: 0.02) and the C/W and W/W (p-value: 0.01). An increase
above the cold season mean precipitation is estimated to occur
during the PDO/AMO W/W (13.3%) and W/C (7.3%) cycles and a
decrease below the mean during the coupled PDO/AMO C/C
(9.6%) and C/W (7.9%) (Table 1). Significant differences in warm
season precipitation medians at the 95% c.i. are noted for the
PDO/AMO W/C and W/W (p-value: 0.04) and for the C/C and C/
W (p-value: 0.01; Fig. 7d). Similar to the yearly effects, the most
significant variabilities in the warm season precipitation are esti-
mated for the C/C and W/W coupled phases when precipitation
is expected to be above the warm season mean (13.9% and 13.5%,
respectively). Only weak influences (i.e. decrease) on precipitation
are expected during the warm season when PDO and AMO are of
opposite signs (i.e. 3.9% and 1.4% below the mean (Table 1)).

3.4.1.2. Streamflow variability. There is almost no difference in
streamflowmedians, both annual and seasonal, among the coupled
AMO/PDO C/C, W/C, and W/W phases (Table 2) and the overlap-
ping confidence intervals indicate that they are not independent
populations (Fig. 7b). On the other hand, the C/W condition shows
a markedly different median and no overlapping confidence inter-
vals (likely independent datasets), with significant statistical dif-
ferences, compared to the other coupled PDO/AMO phases (p-
values: annual = 2.2 � 10�21 to 1.0 � 10�2; cold season = 2.4 � 10�7

to 3.1 � 10�4; warm season: 2.1 � 10�10 to 2.9 � 10�2). As a result,
annual streamflow discharge rates are likely to exceed the overall
mean during the C/C (10.0%), W/C (15.4%), and W/W (20.0%), while
dramatically decreasing below the mean during the C/W coupled
phase (35.3%) (Table 1; Fig. 7e). Only slightly lower variability is
estimated to occur for the cold season streamflow when compared
to the respective mean. The highest variability is estimated to
occur during the warm season, especially during the C/W (37.0%
lower than the respective mean) and the W/W (24.6% above the
mean) phases (Fig. 7e, Table 2).

3.4.2. PDO-ENSO coupled influences
3.4.2.1. Precipitation variability. Precipitation medians show no
variability during the PDO/ENSO combined phases with the same
sign of ENSO (Table 1, Fig. 8a). Although the overlapping confi-
dence intervals are evidence that all four-phase combinations are
dependent populations, the two groups, classified based on the
ENSO sign (i.e. ENSO cold/negative and warm/positive), are statis-
tically different. The Mann-Whitney-Wilcoxon test was applied to
check the statistical difference between the respectively coupled
conditions. The combination of conditions C/C-W/W, W/C-W/W,
W/C-C/W, and C/C-C/W, are statistically different with sufficiently
low p-values (5.2 � 10�5, 3.2 � 10�3, 1.0 � 10�2, and 5.7 � 10�4,
respectively). These statistically relevant combinations are
included in the estimation of yearly precipitation changes
(expressed as% below or above the overall precipitation mean pre-
sented in Table 2) indicating that the largest variabilities occur
when ENSO is warm (C/W and W/W: 12.2% and 11.6% above the
mean, respectively) (Fig. 8a).

Similar to the annual results, cold season precipitation shows
significant differences among the combined PDO/ENSO phases
with different signs of ENSO. Furthermore, cold season precipita-
tion is statistically similar during the coupled cycles with the same
ENSO sign but statistically different among the combinations with
opposite signs of ENSO (Fig. 8c) (C/C-W/W, W/C-W/W, W/C-C/W,
and C/C-C/W with p-values: 3.7 � 10�7, 9.6 � 10�3, 2.4 � 10�2,
3.8 � 10�2, and 6.2 � 10�5, respectively). These statistical differences
show that the largest variability in cold season precipitation
(expressed as% below or above the overall precipitation mean pre-
sented in Table 1) occur when both indicators are of same sign (C/C
is 21.1% below the mean; W/W is 20% above the mean). Further-
more, ENSO largely dominates precipitation during the combined
PDO/ENSO of opposite signs (W/C: 4.4% below the mean; C/W:
19.1% above the mean) (Fig. 6f, Table 1).

The warm season precipitation shows similar responses among
all the coupled PDO/ENSO phases with similar medians and over-
lapping confidence intervals (Fig. 8d, Table 2). This along with
the Mann-Whitney-Wilcoxon tests (p-values ranging from 0.2 to
0.9) confirm that there is no statistical difference among the data
sets and, therefore, limited PDO/ENSO coupled influence on warm
season precipitation variability is expected (Fig. 6f, Table 1).

3.4.2.2. Streamflow variability. Contrary to precipitation, the PDO/
ENSO coupled effects on streamflow discharge do not seem to dif-
fer depending on the ENSO sign; the C/C, W/C, and C/W conditions
show small differences in medians (Table 2) and a high degree of
overlapping confidence intervals (Fig. 6f). However, a markedly
high influence is shown when the two indices are on the positive
phase (W/W). The Mann-Whitney-Wilcoxon test performed
against all other conditions shows the following combinations to
be statistically different: C/C-W/C, C/C-W/W, W/C-W/W, and W/
C-W/W (p-values: 3.0 � 10�3, 2.5 � 10�16, 4.2 � 10�9, and
1.5 � 10�11). Annual streamflow variability estimates (expressed
as% below or above the overall streamflow mean presented in
Table 1) show strong influences of ENSO cold causing a decrease



Fig. 7. Boxplot display of precipitation and streamflow for the different coupled PDO and AMO phases. The plots show differences in shape, spread as well as differences in
medians and confidence intervals at the 95% for the mean monthly precipitation (a) and streamflow (b) records and for the different defined cold and warm seasons (d–f).
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of discharge below the mean (C/C: 17.2% and W/C: 16.4%). On the
other hand, the effects of ENSO warm, when streamflow is
expected to increase, are overshadowed by the PDO in a negative
phase causing a decrease of streamflow below the mean (C/W:
23.1%). A significant increase of streamflow above the mean occurs
when both PDO and ENSO are in their positive phase (W/W: 42.5%)
(Fig. 6f, Table 2).

There are small differences in medians for the cold and warm
season streamflow during the coupled phases mentioned above
with a distinctly higher median for the W/W (Fig. 8e; Table 1). This



Fig. 8. Boxplot display of precipitation and streamflow for the different coupled PDO and ENSO phases. The plots show differences in shape, spread as well as differences in
medians and confidence intervals at the 95% c.i. for the mean monthly precipitation (a) and streamflow (b) records and for the different defined cold and warm seasons (d–f).
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results in the same significant difference combinations as for the
annual streamflow, with p-values several orders of magnitude
lower than 0.05 (i.e. 1.2 � 10�6 � 2.0 � 10�3) and similar patterns
of seasonal variabilities. The most significant variabilities are asso-
ciated with the cold season streamflow when ENSO cold has a
more dominant effect than PDO warm. On the other hand, PDO
cold significantly lowers (21.4% below the mean) warm season
streamflow during ENSO warm. Cold and warm streamflow
increase considerably above the mean during (i.e. cold season
mean) PDO and ENSO warm (Table 1, Fig. 6f), with a slightly higher
effect on the cold season streamflow.

3.5. Drought analyses

Statistical analyses using the chi-squared and Cramer’s ‘‘V”
show that Texas droughts are strongly correlated with La Niña/El
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Niño (V = 0.38) with La Niña playing the primary role (DS = 0.4;
Fig. 3, Table 3). Our analyses show that PDO influences moderately
the occurrence of droughts (V = 0.29) mostly during the cold phase,
but likely intensifies the La Niña effects as indicated by the signif-
icant correlation with coupled PDO/ENSO (V = 0.36). As expected,
the most severe droughts are occurring during the cold phases of
both PDO and ENSO (DS = 0.6). These analyses also show that
PDO warm could diminish the impacts of ENSO cold on droughts
(DS = 1.3) while PDO cold intensifies droughts during ENSO warm
(DS = 0.8) (Table 3). Although AMO has a very weak effect
(V = 0.17), the warm phase is likely responsible for some of the
droughts associated with South Texas (DS = 0.9) and may be inten-
sifying the severity of droughts when overlapping with PDO cold
(V = 0.35 for PDO/AMO). In fact, the effects of PDO cold, when cou-
pled with AMO warm on the frequency and severity of droughts,
are similar to those of La Niña, as shown by the same drought
scores (0.4) (Table 3). A visual inspection of Texas droughts and cli-
mate indicators, depicted in Fig. 3, also indicate that droughts are
more intense or frequent during the coupled PDO cold/AMO warm
phases. For instance, the longest drought recorded in Texas
occurred from 1950 to 1956 during the PDO/AMO C/W coupled
phase. In addition, the highest frequency of recurring droughts
starts with 1987 when AMO began its return to the warm phase
and PDO intermittently switched from warm to cold phases.
4. Discussion

4.1. Climatic effects on South Texas precipitation and streamflow
variability

In South Texas, significant differences are observed in rainfall
amounts between the cold and warm seasons, with substantially
higher precipitation during the warm season (�45 vs. �75 mm).
Differences in streamflow discharge between the two seasons are
Table 3
Contingency table summarizing drought months in Texas and the statistical
significance (i.e. p-values) in relation to temporal phases of SSTs anomalies based
on Chi squared tests. Presented are also the strength of correlation between drought
months in Texas and the climate indicators given by Cramer’s ‘‘V” values. Correlation
of drought years with each temporal SST phase (e.g. PDO cold and warm) are inferred
using the drought score and are marked with ‘‘*”. Drought scores were not calculated
for the PDO/La Niña or PDO/El Niño given the small sample size of each of the
combinations (i.e. few overlapping months corresponding to drought events) also
reflected by Cramer’s ‘‘V” of 0.42 (worrisomely strong).

Climate indices Non-drought
months

Drought
months

Drought
Score (DS)

ENSO; p-value = 6.7�25; V = 0.38
La Niña (C) 89 218 *0.4
El Niño (W) 283 135 2.1
ENSO; p-value = 1.16�e�14; V = 0.21
Cold 306 355 *0.9
Warm 450 219 2.1
PDO; p-value = 6.95e�26; V = 0.29
Cold 243 360 *0.7
Warm 484 214 2.3
AMO; p-value = 1.34�e�9; V = 0.17
Cold 470 261 1.8
Warm 286 313 *0.9
PDO/ENSO; p-value = 1.20�e�35; V = 0.36
Cold/Cold 136 228 *0.6
Warm/Cold 160 127 1.3
Cold/Warm 107 132 *0.8
Warm/Warm 324 87 3.7
PDO/AMO; p-value = 1.31e�33; V = 0.35
Cold/Cold 143 135 1.1
Warm/Cold 298 126 2.4
Cold/Warm 100 225 *0.4
Warm/Warm 186 88 2.1
smaller with higher discharge during the warm season
(warm and cold season: 1.13 � 10�3 (n = 444) and 1.12 � 10�3 m3 �
s�1 � km�2, respectively). The results of this study show that
although precipitation and streamflow are significantly positively
correlated at zero lag and when precipitation leads streamflow
by 1–8 months (Fig. 4), their responses to climatic influences are
different (Figs. 6–8). The most significant climate influences on
precipitation occur during the cold season with increases above
the mean during ENSO- and PDO-warm and AMO-cold and
decreases during ENSO- and PDO-cold and AMO-warm. There are
very weak to- null effects on the warm season precipitation, when
the largest amounts are delivered, suggesting that most of the rain-
fall variability in this area is related to the seasonal cycle rather
than climatic anomalies. The lack of correlation between climatic
variation and warm season precipitation may be due to increased
evaporation rates overshadowing precipitation variability and
driving the decrease of total available water (USGCRP, 2014).

In contrast to precipitation, SST anomalies have a strong influ-
ence on streamflow with significantly larger variabilities during
both seasons. While feedbacks for cold season are expected to be
in part due to changes in precipitation as modulated by the cli-
matic anomalies the significant variability in the warm season
streamflow points to a combination of other factors, including
evaporation, water use and natural lags between precipitation
and streamflow. Joseph et al. (2012) also suggests that while ENSO
is expected to have more significant impacts in South Texas, during
the most critical season, summer, PDO is more closely correlated to
streamflow than is ENSO. As mentioned earlier, precipitation
amounts are almost double during the warm season resulting in
streamflow increases because of accumulation of seasonal rainfall
and overland runoff in rivers. Precipitation that percolates into
the aquifers during the warm season becomes discharge to rivers
as baseflow that likely extends to the cold season (i.e. positive
lagged correlations between 0 and -8 months as shown in Fig. 4)
explaining the increase in streamflow during the cold season. High
temperatures during the warm season generally result in a
significant increase in evaporation rates (IPCC, 2007) especially in
semi-arid to arid areas such as South Texas, where precipitation
is exceeded almost twofold (SAR BBEST et al., 2011). A modest
increase in average temperature can result in higher evaporation/
evapotranspiration (ET) rates from soils reducing the amount
available to plants, aquifer recharge, and hence streamflow. High
rates of ET and groundwater use slowdown/reduce baseflow to
streams and lead to lower stream levels (TPWD, 2017; USGCRP,
2014).

Spatial distribution of rainfall, evaporation rates, and water use
likely further affect streamflow discharge in the area. As shown in
Fig. 1, higher rainfall amounts are delivered in the eastern side of
the area; whereas, the highest uses are located in the lower precip-
itation areas (i.e. San Antonio and Corpus Christi). Evaporation
rates are also increasing from east to west along the climatic gra-
dient. Lower precipitation amounts, high evaporation rates, and
increased water uses will lead to a more substantial response of
streamflow (i.e.% decrease) to climate factors as shown in this
study. Alternatively, reallocation of water from headwater aqui-
fers, the Edwards aquifer for instance, and delivery as treated
municipal effluent, such as to the San Antonio River (see introduc-
tion section), amplifies streamflow discharge even when precipita-
tion rates are lowest. Thus, the spatial distribution of rainfall,
streamflow discharge, and water use, including groundwater, are
substantially impacted by anthropogenic actions and are all-
important factors to consider when analyzing the effects of SSTs
on an area’s climate, especially at sub-regional scales. We acknowl-
edge, therefore, that the differences in precipitation and stream-
flow responses to climate anomalies is manifold as various
factors involved in water management (many mentioned above)
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could somewhat distort the relationship between climate anoma-
lies and streamflow. The effects of these factors should be investi-
gated in relation to climate anomalies for more robust conclusions.
4.2. Comparison with other studies

Other studies show a strong influence of ENSO on streamflow
patterns over the western USA (Kahya and Dracup, 1993; Tootle
et al., 2005), while PDO and AMO have only a weak influence on
streamflow variability (Tootle et al., 2005). These studies are only
in partial agreement with our findings, which show a strong influ-
ence of both ENSO and PDO on precipitation and streamflow and a
weaker but potentially significant effect of AMO. Enfield et al.
(2001) determined that during the AMOwarm phase less than nor-
mal rainfall is occurring in most of the U.S. territory. Our results for
streamflow are consistent with Enfield et al. (2001), but not the
ones for precipitation. Tootle and Piechota (2006) indicate that
during AMO-warm, Atlantic Ocean SSTs influence upper Missis-
sippi River basin, peninsular Florida, and northwest U.S. stream-
flow. Additionally, the streamflow response to the AMO’s shift in
phase was shown to be obvious in the upper Mississippi River
basin, the northern Rocky Mountain region, and upper Colorado
River basin (Rogers and Coleman, 2003). Our findings show that
although a shift to a warm/positive phase of AMO may have signif-
icant effects on the South Texas climate, it is the shifts in PDO-cold
and warm phases that may have a stronger effect on the drought
occurrence. Nevertheless, to our knowledge, there were no studies
showing the effect of coupled PDO/AMO phases on climate condi-
tions and water resources, at least for the southwest USA.

Similar to our findings, McCabe et al. (2004) estimated that
more than 50% of the spatial and temporal variance in multi-
decadal drought frequency in the U.S. is attributed to PDO and
AMO effects. The influence of PDO/AMO cycles on the occurrence
of major droughts has also been noted by Hidalgo (2004) in the
Yellowstone basin. In South Texas, increased intensity and fre-
quency of droughts is related more specifically to the PDO/AMO
C/W cycles, but a very strong relationship also is shown for the
ENSO/La Niña events when also coupled with the cold phase of
PDO. Furthermore, while other studies show that SSTs anomalies
such as ENSO are responsible for higher variation in precipitation
(i.e. up to 40% of annual precipitation) and less for changes in river
discharge (i.e. up to 30%) (Sun and Furbish, 1997), our results show
that in South Texas, ENSO, PDO and AMO are responsible for a
greater response in streamflow discharge than precipitation, com-
paratively (Fig. 6). Although McCabe and Wolock (2014) show that
temporal flow metrics in the US are only weakly associated with
well-known climate indices, this study shows that at a sub-
regional scale, streamflow may in fact show the greatest influence
from SSTs anomalies, offering a better tool for predicting the
impact on water resources when compared to precipitation.
5. Concluding remarks

Since water resources worldwide are affected by climate vari-
ability, there is a need to quantify these effects for robust water
management decisions. This study applied a combination of statis-
tical methods to quantify temporal variabilities in annual, warm
season, and cold season precipitation/streamflow with large-scale
climate phenomena such as ENSO, PDO, and AMO in a semi-arid
region. We found a stronger modulation of ENSO on cold season
precipitation and streamflow variability than during the warm sea-
son. Increases in precipitation above the mean are associated with
the warm phases of ENSO, while decreases below the mean are
characteristic of the cold phases. In contrast, streamflow is modu-
lated almost equally by both ENSO warm and cold (with higher
discharge rates during the warm phase and lower during the cold
phase). Coupled analyses indicate that the effects of ENSO-cold are
intensified by PDO-cold, resulting in much lower rainfall amounts
during the cold season. On the other hand, there are strong tele-
connections between PDO-warm and cold season streamflow dur-
ing the ENSO-cold. PDO-cold/ENSO-warm has a strong influence on
warm season streamflow although there is no significant modula-
tion on precipitation depths. The highest mean precipitation of
82.6 mm or 38% above the overall study area mean was observed
during the warm season when PDO and AMO are both in either
their warm or cold phases. The highest mean streamflow of
16 � 10�4 m3 � s�1 � km�2 or 45% above the study area mean was
observed during the coupled warm phases of the PDO and ENSO
with no significant difference between the cold and warm season
streamflows. The lowest mean precipitation of 35.4 mm or 41%
below the overall mean of the study area was observed during
the coupled cold phases of the PDO and ENSO while the lowest
streamflow of 7.1 � 10�4 m3 � s�1 � km�2 or 35% below the study
area mean was observed during the PDO-cold phase coupled with
a warm AMO.

Although La Niña is responsible for drought occurrences in this
area, PDO cold is the dominant driver when ENSO is in the warm
phase. While no significant impact of AMO is observed on the
area’s precipitation depths, streamflow is consistently below the
mean across the seasons and annually during PDO-cold/AMO-
warm coinciding with the most intense and frequent droughts
recorded in Texas for the investigated timeframe. At the investi-
gated scales and for the climatic conditions on record, streamflow
shows a strong correlation with SSTs anomalies. Such information
is important when assessing and predicting our vulnerability to
temporary or sustained scarcity risk of this water resource, espe-
cially with increasing temperatures, population and climate
change. Consequently, streamflow offers a more direct tool for pre-
dicting impacts on water resources when compared to precipita-
tion. However, we acknowledge that the cause of such significant
correlations, as those observed in this study, is diverse and numer-
ous factors involved in water management could influence the
relationship between climate and streamflow. Although effects
associated with water management practices and evaporation on
water resources are not quantified herein, these statistical rela-
tions can provide water management decision makers with addi-
tional tools and knowledge to better assess current resources,
while proactively mitigating future supply issues before they
become further environmental and economic burdens within the
study area and for other regions similar in nature.
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